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Absolute continuity of the integrated density of states of the 
quantum Lorentz gas for a class of repulsive potentials 

A Tip 
FOM Instituut voor Atoom- en Molecuulfysica, Kruislaan 407, 1098 SJ Amsterdam, 
The Netherlands 

Received 19 May 1993 

Abskact. For a class of repulsive potentials, for instance of the type p(x)= 
Ixl-rIl+x2]-”(~,IZ positive, in a certain range) in the random Schredinger operators 
H(m)=p’+ V(x, m)=p’+Z,p(x-r,), acting in L*(R”)+ with Poisson distributed r,s (the 
quantum Lormtz gas), we show that the integrated density of states N(E)  is absolutely 
continuous for E><p<p) .  Here is (p) the integral of c over a’, p the averaged density 
of points x, and 5 1  0 depends an p and d. In the above example, <= [d/x)’. Our method 
makes use ofa Fock space representation for the Poisson random system, recentlydeveloped 
by Maassen and the author. Within this Fock space formalism the Moume commutator 
method is thm~employed to obtain the announced result. 

1. Introduction 

Although much is known about asymptotic properties, such as Lifshitz tails, of the 
integrated density of states N ( E )  for random SchrGdinger systems (Kirsch 1989, 
Carmona and Lacroix 1990) the situation seems to be quite different with respect to 
its absolute continuity (differentiability) beyond the one-dimensional situation (Car- 
mona and Lacroix 1990, preface). In the present work we present some partial results 
concerning this property for the quantum Lorentz gas, i.e. a single Schrodinger particle 
moving in a background of randomly placed identical scattering centres, distributed 
according to a Poisson law. Thus we are dealing with a family of random Hamiltonians 

H(P) ‘P2+ c P(X -4 =Pz  + P(dY)P(X--Y) =P2+ (6 I p >  (1.1) 
j s 

acting in X=Lz(Rd) ,  where the x,5 are Poisson distributed. We label the various 
realizations by means of the measures p (a sum of Dirac &-measures with unit strength), 
which are now the elements of a probability space ( M ,  P(dp)) with P= P(p) the Poisson 
random measure (Kirsch 1989, Carmona and Lacroix 1990), which depends on p, the 
average scatterer density (its intensity in probabilistic terminology). 

As discussed earlier (Tip 1994) averaged quantities can be formulated in terms of 
functions of the operator H in X = L 2 ( M ,  P(dp); X)=X@Lz(M,  P(dp))=X@.l, 
where H i s  the operator which equals H ( p )  on the fibre p. In a second paper with 
Maassen (Maassen and Tip 1993) it was shown that a unitary mapping can be made 
from 9’ onto the symmetric Fock space .Fw,(X) over 2‘ such that averages now 
become vacuum expectation values. Since N ( E )  is self-averaging (i.e. it has the same 
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value for almost every 
underlying Hilbert space is 

we can study it in this Fock space setting. Now the 

X F  := 3Eb@Fsyra(8) Fsym(3Eb) := CQ8$(3EbQ18)sym@. . . 
2 = LZ( Rd, dx) . 

Written differently, 
m 

m n 
p =  @ p(") with p" = pj  

"-0 j - 0  

the total momentum operator acting in X'"). Furthermore 
m 

w 9 3  &)= V9) +&W9) + d 9 )  =. 8 ~ ( " ) ( 9 ) + ~ { b ( 9 ) ~ b ( 9 ) : }  + P(9) 
n- I 

(1.3) 
v'"'(d(XI ,..., x . ) = . i  q(xJ <&=Jdxm(x) 

j -  I 

where b(9) and b(9)* are annihilation and creation operators for 9 ~ 2 .  As shown in 
Maassen and Tip (1993) HF is essentially self-adjoint for a large class of qs on a core 
Y: of smooth, compactly supported, finite particle vectors, i.e. elements of 3yF of the 
formf=lfo,fi, . . . ,J,, 0, 0, . . . ) withJ in C,". We shall use the phrase nth layer for 
the space Z(") as is usually done with Fock layers and drop the subscript F if no 
confusion can arise. 

We shall show that for a class of repulsive potentials 9, the spectrum of H is 
absolutely continuous above a value cp(9),  where 5 is a positive number, depending 
on d and 9. This entails the absolute continuity of N ( E )  in the same range. 

A well known method to establjsh absolute continuity is the complex dilatation one, 
originated by Combes et a1 (for a textbook version, see Reed and Simon 1978). It relies 
on relative compactness properties of the perturbations involved, giving control over 
the dilated essential spectrum. In the present case, although complex dilated closed 
operators H F ( ~ )  can be shown to exist, the term &W(9, 0 is lacking relative compact- 
ness properties and we have no control oxer the spectrum. However, the corresponding 
first-order theory, developed by Mourre (for a textbook version of the Mourre method, 
see Cycon ef al 1987), does work for a class of repulsive potentials, for instance of the 
form p ( x ) = I ~ I - ~ [ l  +x2]-', with K and A positive in intervals depending on the dimen- 
sion d. Our method of proof consists of a straightforward application of Mourre's 
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commutator theorem. In fact we show that a > 0 and <E R exist such that, as a form 
on V2, 

n n 
A"= 1 f (x j . p ,+p l .x j )=  1 Aj. 

j - 0  j - 0  

We note that A is a direct generalization of the ordinary generator of dilatations in 
LZ(Rd).  Denoting the spectral measure associated with H by E(A), Mourre's theorem 
states that H has purely absolutely continuous spectrum in any open interval A, for 
which E(A)[H, iA]E(A) >yE(A)  with positive y. In our case A c ( < p < q ) ,  00) leading 
to absolute continuity of the spectrum of H in the interval (<p(p), CO). 

Our results are rather restricted. In other cases treated by means of commutator 
methods (Reed and Simon 1978), A can be modified with the result that a larger class 
of potentials can be allowed (in particular the singular behaviour in x=O is no longer 
required). Corresponding modifications of A in the present situation give unwieldy 
expressions involving additional terms on the right in the commutator in (1.4). In N- 
body systems they have compactness properties and can be handled (Cycon et a1 1987) 
but here the situation is more complicated. 

A second deficiency of our method is that no results are obtained in the interval 
[0, < p ( q ) ]  at the bottom of the spectrum. Here a Lifshitz tail develops (Kirsch 1989) 
and localization, if it occurs in the present type of random system, is expected to take 
place in an interval [0, a] for d23.  Also absolute continuity of N ( E )  seems to play a 
role in a proof of localization (J M Combes and P Hislop, private communication). 

2. Commutator estimates 

In this section we derive the necessarycommutator estimates needed for the application 
of the Mourre theory. 

2.1. The dilatation group on L2(Rd) 

Let AP) be the generator of the dilatation group of isometries on LP(Rd), 1 ~ p c  00, 

defined by 

(U" (8)f)(x) := (exp[iA?''S]f)(x)=exp f€LP(Rd), $688. (2.1) 

Denoting Ao=A$,2', we have, on a common dense set, 

iAo--=~A(P)- d .  d - 
- - X . a ,  

2 P 
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ForfeLz(Rd) we have 

du exp[-(p-iAo)u1f P>O 
(2.3) 

du exp[(p -iAo)u]f p < O  

so that, using (2.1) and making a change of variables (x= 1x1, e,=x/x), 

g := [p - iAo]-'f= 

.JP-d/2) jxm dyy(-t-#*d/z) f (Ye= ) P'O 

g ( 4  = (2.4) 
/-xU-d/Z) 1; dyyc-l-P+d/2' f(wA p < O .  

Thus f ( x ) > O  a.e.-g(x)>O for p > O  and &).SO for p<O.  Second, 
fd' n L p * g d t  n Lp, provided p # -d/2 and p #(d/2) - (d/p). Even if p = (42)  - 
(d/p),  gsL' n Lp providedfel' nL$, withp'>p, since now g d '  n Lp'. 

2.2. Dilafafion of H and commutators 

We now introduce the dilatation group {U(9)=exp[i9A]l9~R} on XF by means of 
its action on the nth layer, 

(U'")(9) f ) (xo , .  . . , x.)=exp[(n+l) d9/21f(e3xo,. . . , e  5 x,,) (2.5) 
its generator being given in (1.4) when acting on elements of W. We write H on %? as 

H=Ho + &W(d + p ( q )  

Then, on the nth layer, 

m 

Ha =~ 0 H$') H$')=(P("))2+ v'"'(q). (2.6) 
n-0 

U(") (~ )H$)U '" ) (~ ) - '  =exp[-291(~")~+ ~ ( n ) ( q ~ ) ,  95(x) =9(esx). 

Secondly 

( U ( ~ ) ~ ( ~ ) ) U ( S ) - ' ~ ) , - , ( X O , .  . . ,x.-1)=ex~[d9/2l(b(q3if).-l(xo,. . . ,x~- I )  

and similar for b(q)*, so that 

H ( 9 )  := U(S)HU(S)-t=exp[-29]p+ V(q3)+&exp[d9/2] W(qs)+p(9). 
Proceeding formally, taking derivatives in 9 = 0, we obtain 

(2.7) 

Ct :=[H,L4]=2p-V(q)-&W - q + q  

(2.8) 
(l 1 

C2 := [[H, iA], iA] = 4 p +  V( 5 )  +&W - 9 + d q  + 5 (as 1 
where q = x .  a,9 and c=(x .  a.)'q. (Note that (q)=-&q), (5)=d2(9)). These 
formal results become exact as quadratic forms on %? provided q and 5 are square 
integrable. In fact we can say more: 



Interested density of states of the quantum Lorentz gas 1061 

Proposition 2.1. Suppose that q, q and 5 are contained in L' n Lp(Rd), p = 2  for d<3, 
p > 2  for d = 4  andp=d/2 for d25 .  Then C, and C, are essentially self-adjoint on W. 

Proof. The proof, which makes use of Nelson's commutator theorem, is the same as 
that of the essential self-adjointness of H on W, as givcn in Maassen and Tip (1993). 0 

In the following sections 2.3-2.6 we shall assume that the conditions of the proposition 
are satisfied. Then the various As occurring there, being linear combinations of q, q 
and 8, are also in L' n LF. In fact we shall reverse the procedure, demanding&&' n LF. 

2.3. A positivity result 

In order to obtain the basic Mourre estimate we shall need the following lemma: 

Lemma 2.2. Let  EL' nL2(Rd) and suppose yr(x)>O for almost every x. Then, for 
AzEIW, as a quadratic form on W, 

q w ,  a):= v ( ~ ) + a t W ( ~ ) + a 2 ( ~ ) ~ o .  (2.9) 

Proof. For fe3 ( ~ ( ~ , ~ l f ; f ) = ( V ( w l f , f ) + 2 ~ R e ( b ( w v ) f , f ) + ~ ~ 2 < w ) l l f  11'. Now 

2 1  Re(&( wlf;  f ) + 

(note that the sums below are actually finite, f being contained in W) 

w> lVl12 
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2.4. The Mourre estimate for C, 
Let q > O .  We write, as a form on Q, 

C1=2P?+aQ(q,&)+R a>O. 

Then 

(2.10) 

R=V(-ap-q)+&W (2.11) 

Since 

e+ aQ(9, &) > a d  ao=min{2, a }  (2.12) 

we have a Mourre estimate provided R2/3 for some PER. The idea is now to see 
whether R can be written as a s u m  of positive CJs and a real constant. Thus we put 

R=Q(-av-bq, AI&) f Q(-fV-gp, A*&) +hp<p) .  (2.13) 

Then Cl>aoH+hp(p) } .  Comparing (2.11) and (2.13) we obtain 

d 
(A,-&)a=l-& (A,-&)b=(l -&)a +- 

2 

h = -- [(A, +A2 - 2A,&)] - a(1 -A,)(  1 - &)(d- a). 
d 
2 

Note that A, =& gives d=O, a contradiction. A tedious calculation reveals that no 
generality is lost by setting f = O .  Then 

Thus, with & = l - & ,  

Both CJs are non-negative provided E> 0 and 

d 
2 E  

ji := -q-ap-- pa0 

or 

Hence, formally, 

(2.14) 
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By our results in subsection 2.1. this becomes true by taking a non-negative function 
from L' n Lp forfi and requiring that 

d d 
c, = -- a --> 0 

2 2 E  

(this implies that PEL')  and 

d d 
--a--#O. 
P 2.5 

(Recall that we may have equality in the last expression provided fi EL' n Lp' with 
p'>p.) Note also that c, > O  implies a <d/2 .  Thus we have ao=a for d<3.  Now, as a 
form on Q, 

For d g  3 and given cI attains the minimal value 
-2 

Znin=d2(--ci) d 2 4  for 
2 

(2.15) 

In order to apply the Mourre theory we need some furtb ' proE .ties of CI and C, 
so that they have certain boundedness properties as transformations in the scale of 
spaces generated by H (Cycon et a1 1987). We shall show that under some additional 
restrictions on Q, this is actually the case. We start with C, . 

2.5. Bounding CI from above 

We try to bound Cl from the other side: yoH+p>Cl.  Now, with p #0, 

SinceZP+y@(p, &)< yoH, yo=max{2, y } ,  y > O ,  thedesiredresultfollowsiftheiast 
two UJS are non-positive, i.e. if ( p  - y)q+ q =f220 and p > 0. Thus 

(2.16) 

where Q,>O and PEL' n Lp hold, provided j k L '  n Lp and 

(2.17) 
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Together with (2.15) we now have, as forms on Q, 

(2.18) 

and it follows that [ I  + H ] - l / Z C ~ [ l + H ] - ' / Z  defines a hounded operator on X F .  In 
particular E(A)C&(A)EB(XF)  and we have 

E(A)GE(A) > YE@) Y > O  A c ( S p ( 9 ) ,  a). (2.19) 

d Z  dz 
yoH-- p(@> Cl 2 a&-- p(q) 4P 2 

2.6. Bounding C, from above 

We write, with 6>0, v#O, 

(2.20) 

where 

The two last CDs are non-positive if 

9 - ~ ~ + 5 = - f 3 9 0  (2.21) 

Thus 
- I  

p=v- '  [:-iAo] f4=v-'[c4-iAOI-lf4 

giving v>O and  EL'. Also P E P  for pf.4 but for p = 4  we have to require that 
f4eLP',p'>p. (Alternatively we can make a slightly different decomposition in a sum 
of as.) Second, 

v + d  
2 h= [c+- iAo][c- +iAo]p  c*= [S  + $( V' + vd) ] '" f -  

or 

q=[c+  - i ~ ~ ] - ' [ c - + i ~ o ] - %  

and 9 2 0  requires c+>O, i.e. 6>(d/4) ( d +  v) .  Then 

Cz<6oH+KP(9) 6,,=max{4,6}. (2.22) 
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We meet the L' nP-requirement by demanding 

2.7. Bounding Gfrom below 

Now the last two @s in (2.21) must be non-negative, i.e. the signs change in (2.21). 
Replacing 6, v and K by 6', -v' and K', we have 

-v' -q+q  =f&O. (2.23) (: 1 - (r-i v.)Q+ v,q+(=f+O 

The second results in v'>O and the first can be written as 

leading to 

d-  v' 
2 

Q= [ C i  -&]-'[cl -So]-% ' CL=-* [6 '+ :( f)2- ~v'd] ' /2  

for 

6 ' + : ( ~ ' ) ~ - $ v ' d > O .  

This, together with the requirement c; > 0, gives 

d d ( d -  v')>S'>-(d- v'). 
4 4 

We shall disregard the other case. In this situation C&6;H+~'p(p),  
&=min{4, 6'}. Combining this with (2.22): 

6 0 H + K P ( Q ) ~ C z ~ 6 ; H + K ' p < : Q .  (2.24) 

Hence [I + H]- '"CZ[~  + H ] - ' / z ~ B ( X ~ ) .  Note that this would already follow if 
SA= 0, i.e. Cz merely bounded from below. Instead we see that we have actually obtained 
a 'multiple commutator' inequality (for the latter, see Jensen et 01 1984). 

2.8. The allowed class of Q> 

One way to satisfy the various requirements in subsections 2.k2.7 is by taking Q of 
the form 

We can, for example, satisfy subsections 2.4-2.7 by taking 

Q= [ v ,  -iAo]-'[vz +iAo]-'f 
vl<min{cl, c4=$, c+}=min{cl,:} v2<min{cz,c-j. (2.25) 
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Then the correspondingfp are non-negative. For instance 

fi= [c+-iA~l[c-+iA~]q= {[c+- VI][VI -iA& + i}{[c-- vz][vz+iA~l-’ + l } f i O ,  

Subsection 2.7 can now be satisfied by requiringf= [v3-iAo]-1h, with suitable v3 and 
further adjustment of vI or, alternatively, by a suitable choice of 6’ and v‘. 

A different, simpler, approach is to observe that the various positivity requirements 
can be met if q GO, k ~ q ( x )  GI +)I <kZp)(x) and I c(x)1 Gk3p)(x) for a.e. x and positive 
kp. For example 

qJ(X)=Xr[l +I?]-” max {t -,a+- i] < K < -  ,” K+W>d 

satisfies all our requirements for suitably chosen v, 6, v’ and 6’. Here cmin= ( d / ~ ) ’ .  

3. Absolute continuity results 

In section 2 we obtained the necessary information to state the following theorem: 

Theorein 3.1. There exist (non-negative) PEL’ n L’(Rd), p = 2  for d<3,p>2 for d=4 
andp = d/2 ford= 5, such that the spectrum of H is absolutely continuous in an interval 
(cp(p), m), c>O.  An example is given by (2.26). 

Pro05 According to our discussion in section 2 there exist 04 PEL’ n E’( Rd) such that 
[I +H]-’/’C1[I +HI-”’ and [I +H]-’”C2[1 +H]-’/’define bounded operators on 3yF 
with CI being the estimate E(A)CIE(A)>yE(A),  y>O, A c ( c p ( q } ,  m), 520. Thus 
the hypotheses 1, 2, 2‘ and 4 on p. 62 of Cycon et af (1987) referred to as CFKS are 
satisfied. Thus corollary 4.10 of CFKS applies provided their lemma 4.12 holds. In CFKS 
this lemma is proved using their hypothesis 3 which is irrelevant in the present case, 
there being no natural decomposition H= Ho f Vwith the required properties. However, 
the statement of lemma 4.12 also follows under the assumptions C, d ( x k )  and U($) 
defines a strongly continuous, exponentially bounded semi-group on Z k ,  k = f I, where 
{ X # e N }  is the scale of spaces associated with H. The first of these was already 
verified whereas the second follows from the following considerations: 

For y 2 0  and ,%ER we have 

@(Y,  w - p - V - p w ’ ( ~ )  p e a  11 

w, ” m y ,  A)-N -pc)-’a2w P E P ,  1) yeR. 

Now let y>O be repulsive and $BO. Then y s ( x ) < y ( x )  and the first of the above 
relations with p =exp[-d3/2] together with lemma 2.2 results in 

4dv, 4 4 exp[d3 /21 WY, A) + (exptd3 /21 - 1 )%>) 

whereas, if in addition ys(x)>exp[-a3]y(x) for 3 > 0  and some a>O, the second 
relation with p = y’ =exp[-d3/2] and lemma 2.2 lead to 

Qs(y ,  A) >exp[-(a+d/2)3]@( y, A)- (exp[d3/2]- 1) exp{-d3]L2(y>. 
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Combining results we have, for 9 30 and D=max{2, a +d/2} ,  

exp[-PSlH- (exp[d9/21-1) exp[-d$Ip (GO 
G H ( 9 )  Sexp[d9/2]{ H +  (exp[d9/2]- I ) p < q ) }  

with a similar result for 9 <O obtained by sandwiching this expression between U($)-' 
and U($). Now we can conclude that 9(H(9)1")=9(H"z)  and that U(9) is exponen- 
tially bounded on 0 

We now turn to the integrated density of states measure v(A) (the integrated density 
of states N ( E )  is given by N ( E )  = v((-m, E]) (=v([O, E]) in our case). In the present 
situation with non-negative potentials, proposition VI.1.3 of Carmona and Lacroix 
(1990) applies so that we have, for square integrable, strictly positive, continuous f with 
unit L2-norm and A a bounded Bore1 set in R 

v(A)=/p(dp) t r x f ( x ) ~ , , ( A ) f ( ~ ) = t r ~ f ( x ) ~ ( A l f ( ~ ) { ~ ~ ~  (. , W O ) S W O }  (3.1) 

where coo is the vacuum state in 9 and E,,(. ) and E ( .  ) are the spectral decompositions 
of H ( p )  and H, respectively. (The ergodicity of the Poisson process guarantees that the 
density of states measure has the same value for a.e. p.  Thus it equals its integral over 
P(dp).) Let {U,} be an orthonormal basis for 3. Then 

" 
v(A)= lim v("'(A) v")(A) = vj(A) 

n-m j- I 

We note that {g'")} is a Cauchy sequence with L'-limit g and that 

v ( ~ )  = dag(a). 
JA 

Thus we have shown : 

Theorem 3.2; Under the assumptions of theorem 3.1 the integrated density of states 
measure v(A) is absolutely continuous in ( ( p ( q ) ,  to). 
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4. Discussion 

Observing that H does not depend on the variable xo we obtain a direct integral decom- 
position by means of the Fourier map (see Tip 1994, Maassen and Tip 1993 for details). 
Thus 

H=J: dk H(k) H(k)=(P+k)2+Q,(% &I (4.1) 

with H ( k )  acting in F=Fw(W) and 

the total momentum operator acting in P("), the nth Fock layer. With 

we obtain, for 0 < a  <2, working things out as before 

G ( k )  := [H(k),i4]=2(q+k)-q+[@,iA]>a(p+k)*-[2-a]-'k2+[@,iA] 

d s  
2a 

> a{H(k )  -- p(p) - &[2- a ] - ' p }  

leading to absolute continuity of the spectrum of H(k)  in an interval 

(4.3) 

(4.4) 

Thus we have a weaker result on the fibres, not even uniform i n k  (on the other hand 
it is not apriori evident that H(k)  should have any a.c. properties at all). We can look 
upon the above result from a different angle by noting that H(k) can be written as 
follows: Let P=(.,cuo)wo be the projector upon layer 0, Q=1-P and @)= 
(0, p, O,O,.  . ).Then 

~ ( k ) = P p +  Q H ( ~ ) Q + & { ( .  , o0)p(I)+(. , ~ ( " ) O ~ } = H ~ ( ~ ) + & ' W ' ' )  (4.5) 

where Ho(k) =k2P+ QH(k)Q has the eigenvalue k2 and &@I '  is finite-dimensional. 
If QH(k)Q has purely ax. spectrum in a neighbourhood of k2, we expect that the 
perturbation &W'" will remove the eigenvalue. It is intriguing to note that an unsym- 
metrized extension H&) of H ( k )  exists for which lemma 2.2 applies with the result 
that QHUsQ has purely a.c. spectrum in 
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where 

( ~ u ( ~ l f ) n ( ~ l , . .  . ,xll)=wxn)f.(xI, . .  .,&) 

( a ( d * f  ) n ( x ~  , . . . , xn) = 

(nf ).(XI, . . . , x,) = (W 1 h(x,, , . . . , xi,). 

- I (XI , . . . , x. - 1) a(x. ) . 
Then H(k)=l lH,(k)n ,  where ll is the symmetrization projector: 

pem 

Now,usingA(k)=A+k.Xl, (Xlf).(xt,. . . .x,,)=xlfn(xI,.. .,x.),instead ofA, we 
obtain the relevant Mourre estimate for QH&. Note that k *XI commutes with CD.,. 
However, since II does not reduce H&) we cannot draw conclusions about QH(k)Q 
from this result. In a two-layer approximation (see Maassen and Tip 1993), on the 
other hand, the generic situation is such that # changes into a resonance. 
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